i m getting exact answer
suppose mass of block = m1 ,
we hav m1 = msinα
let the pulley rotate clockwise by small θ
and let the resultant angular accn = β
Wgravity = ΔKE
m1grθ + mgr ( cos (α+θ) - cosα) = 12m1r2ω2+12mR2ω2 + 14MR2ω2
differentiate both sides wrt time
m1grω - mgrsin(α+θ)ω = 122m1r2ω(β)+122mR2ω(β)+ 142Mr2ω(β)
i.e
[ m1 - msin(α+θ) ]g= β2 (2m1r +2mr +Mr )
m1 - msin(α+θ) = msinα - m (sinαcosθ +cosαsinθ)
as θ is small , cosθ ≈ 1 , sinθ≈θ
so,
g[ m1 - msin(α+θ)] = - (mgcosα)θ = β2 (2mr(1+sinα) +Mr )
now u can find angular frequency
actually using torque ,this question is very easy
mgRsin(α + θ) - m1gR = β Σ I
i.e
mgR(sinαcosθ+cosαsinθ - sinα ) ≈ (mgRcosα)θ = β Σ I
energy method shud be used only when writing torque/force equations is difficult