(\vec{a}-\vec{b}).(\vec{a}+\vec{b}) =0
|\vec{a}|^{2}-\vec{a}.\vec{b} +\vec{a}.\vec{b} -|\vec{b}|^{2} =0
|\vec{a}| =|\vec{b}|
The sum of two vectors A and B is at right angles to their difference.Then
(a)A=B (b)A=2B
(c)B=2A (d)A and B have the same direction
if ur geometry is fine....
then vectors are just like bread and wine...... :P
use the property that...
the median from the vertex containing the right angle on the hypotenuse of a right-triangle
equals the bisected parts of the hypotenuse...!!
so lock option (A)
(\vec{a}-\vec{b}).(\vec{a}+\vec{b}) =0
|\vec{a}|^{2}-\vec{a}.\vec{b} +\vec{a}.\vec{b} -|\vec{b}|^{2} =0
|\vec{a}| =|\vec{b}|