ans=20
using the identity - (x+y)(axn + byn) - xy(axn-1 + byn-1) = axn+1 + yn+1
Find ax5 + by5 where a,b,x,y are real numbers satisfying
ax+by = 3
ax2+by2 = 7
ax3+by3 = 16
ax4+by4 = 42
-
UP 0 DOWN 0 0 2
2 Answers
ax+by =3
=>ax2+bxy=3x
ax2+by2=7
from these two:
by(x-y)=3x-7......................................................(1)
from the rest of the equations:
by2(x-y)=7x-16....................................................(2)
and ,
by3(x-y)=16x-42...................................................(3)
or, y=7x-163x-7=16x-427x-16.
or, x2+14x-38=0...................................................(4)
Now, we do not need to solve this equation...
Notice that whatever we had done in case if x could also have been done with y
i.e.
we can get equations:
ax(y-x)=3y-7......................................................(1')
ax2(y-x)=7y-16....................................................(2')
and ,
ax3(y-x)=16y-42...................................................(3')
or, x=7y-163y-7=16y-427y-16.
or, y2+14y-38=0...................................................(4')
So, x and y are roots of the equation t2+14t-38=0
x+y=-14
xy =-38
Now utilizing the fact that
(x+y)(ax4+by4)=ax5+by5+xy(ax3+by3)
ax5+by5=38*16 - 14*42= 20