·2010-08-27 09:41:23
WE CAN USE AM>HM FOR FIRST CASE.
(1001+1002+.................................+3001)/2001>2001/(1/1001+1/1002+.............+1/3001)
HENCE,
2001/2*(1001+3001)/2001>2001(1/1001+1/1002.......)
2001>2001(1/1001+1/1002.............)
SO,
1>1/1001 + 1/1002 .............
second part needs a bit more thinking.
62
Lokesh Verma
·2010-08-27 11:03:18
krishna you have made a small mistake in the inequality...
your logic though is correct
1
Ricky
·2010-08-27 11:09:10
I ' ll prove the next part .
11001 + 11002 + ..........11250 < 2501000 = 14
11251 + 11252 + ...........11500 < 2501500 = 15
11501 + 11502 + ............12000 < 5001500 = 13
12001 + 12002 + ............13001 < 10012000
Adding up , we get reqd . sum , S < 77036000 < 43
Numerical Computation of Integrals should also give the answer .
·2010-08-29 07:31:21
ricky i think it should be
1/1251 + 1/1252 + . . .. . .. . . .+ 1/1500 < 250/ 1250 = 1/5