06-03-09 Find the sum?

I saw something like this in Mathematics today sometime..

\sum_{1}^{n}{\frac{k+2}{k!+(k+1)!+(k+2)!}}

Find this....

15 Answers

1
skygirl ·

= \sum_{1}^{n}{\frac{1}{k!(k+2)}}

agey soch rahe hai.....

24
eureka123 ·

haan sky yahaan tak to ho hi gaya........
Σ(k+2)/[k!+(k+1)k!+(k+2)(k+1)k!]
=>Σ(k+2)/k!(k+2)2
=>Σ1/k!(k+2)

1
MATRIX ·

hey!!!!! so Σ1/k!(k+2).....naa........

13
Двҥїяuρ now in medical c ·

=Σk/(k+2)!+Σ1/(k+2)!

=Σ1/(k+1)! - Σ2/(k+2)! + Σ1/(k+2)!

1
skygirl ·

ans :- 1/2! - 1/(n+1)!

11
Sunil Kumar ·

How please post the solution ?

24
eureka123 ·

how about multiplying and dividing by k+1

so that it becomes Σ(k+1)/(k+2)!................dont know whether it will help or not....[12]

24
eureka123 ·

oops..........ye sab kuch to ho gaya.......

1
MATRIX ·

direct substitution after the processing of the question into the simpler form........ sunil u'll get sky's answer...........

1
skygirl ·

after post no #2 :

= Σ(k=1 to n) [(k+1) / (k+2)!]

= Σ(k=1 to n) [2/3! + 3/4! + 4/5! + ........ + n/(n+1)!]

= Σ(k=1 to n) [(3-1)/3! + (4-1)/4! + ....... + {(n+1)-n}/(n+1)!]

= Σ(k=1 to n) [1/2! - 1/3! + 1/3! - 1/4! .............. + 1/n! - 1/(n+1)!]

= 1/2! - 1/(n+1)!

62
Lokesh Verma ·

awesome work sky..

1
skygirl ·

thankuu [1]

13
Двҥїяuρ now in medical c ·

\sum_{1}^{n}{\frac{k+1}{(k+2)!}}

=>\sum_{1}^{n}{\frac{k+2-1}{(k+2)!}}

\Rightarrow \sum_{1}^{n}{\frac{1}{(k+1)!}}-\sum_{1}^{n}{\frac{1}{(k+2)!}}

t1= 1/2! - 1/3!
t2= 1/3! - 1/4!
.
.
tn=1/(n+1)!-1/(n+2)!

Sn=1/2! - 1/(n+2)!

small mistake in sky's solution....

24
eureka123 ·

hmmmmmmmm[3][3]

1
skygirl ·

arey sry... dats a typo....

bhook lagi thii tab zorse... dats y [3]

Your Answer

Close [X]