07-03-09 Prove this inequality.

I think many of the JEE aspirants fear inequalities a lot so a very simple one. It uses only AM GM inequality That too only once!

\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq 3/2

Just give it a try .... Think for just a bit and all of a small tricks that you can apply. it is really a simple one.

a,b,c > 0

13 Answers

21
tapanmast Vora ·

#### galat hai #####

First cuple of steps havnt bn shown but i guesss they are self-Understandable [1]

21
tapanmast Vora ·

is this rite?

62
Lokesh Verma ·

see closely, tapan.. there is no symmetry betwen P and Q.

21
tapanmast Vora ·

YAHH!!!!

LOL........ the base of proof mein hi leakage... [2]

1
krish1092 ·

\text{Consider} \sum_{cyc}(\frac{a}{b+c}) \\ \text{Apply AM GM} \\ \\ \Longrightarrow \sum_{cyc}(\frac{a}{b+c}) \ge 3(\frac{abc}{(a+b)(b+c)(c+a)})^{1/3} \\Now,(a+b)(b+c)(c+a) \ge 8(abc) \\ \Longrightarrow \sum_{cyc}(\frac{a}{b+c}) \ge 3(\frac{abc}{8abc})^{1/3} \\ \Longrightarrow \sum_{cyc}(\frac{a}{b+c}) \ge \frac{3}{2}

21
tapanmast Vora ·

how did u get thwe statement after "now"??

33
Abhishek Priyam ·

(a+b)≥2√ab
(b+c)≥2√bc
(a+c)≥2√ac

multiply all these

21
tapanmast Vora ·

thnx Priyam [1]

1
maddybaddie ·

i'v used AM-HM inequality...

(a+b)+(a+c)+(b+c) ≥ 3
--------------------------- ------------------------------------------
3 1/(a+b) + 1/(a+c) +1/(b+c)

2(a+b+c)( 1/(a+b) + 1/(a+c) +1/(b+c) ) ≥ 9

c/(a+b) + b/(a+c) +a/(b+c) ≥ 9/2 - 3

c/(a+b) + b/(a+c) +a/(b+c) ≥ 3/2.

is dis correct?

62
Lokesh Verma ·

great way that :)

11
Mani Pal Singh ·

gud answer i appreciate ur work maddy.....

1
maddybaddie ·

thnx sir...
dats my 1st pinked post...yippee!!! :D

66
kaymant ·

This is the famous Nesbitt's Inequality. Look at the following link for as many as 25 proofs. (Go to the link, and look for the link on Nesbitt's)
http://kaymant.googlepages.com/mathematics

Your Answer

Close [X]