planck

prove

\int_{0}^{\infty}{\frac{x^3}{e^x-1}\mathrm{dx}}=\frac{\pi^4}{15}

15 Answers

39
Pritish Chakraborty ·

How is this thermal physics??

1
lamda ·

see here

now integrating over all the wavelengths

u encounter that integral

1
lamda ·

they told

but how?

1
prateek mehta ·

Plz refer the gamma function on wiki ..for the integrals of the type ∫e-xxn

Limit ranging from 0 to ∞... it will become easy if u also refer
------ R.D Sharma the big book..it has this topic in definite integrals..it is actually easy..if u know how to do the basic qns.

1
Ricky ·

1
Ricky ·

1
Ricky ·

1
prateek mehta ·

i said lambda this function is not easy :)..amazing job ricky!!

1
xYz ·

well it can be done in a simpler way

.I=\int_{0}^{\infty}{\frac{x^3}{e^x-1}}\mathrm{dx} \\ I=\int_{0}^{\infty}{x^3}\sum_{n=1}^{\infty}{e^{-nx}}\mathrm{dx} \\ I=\sum_{n=1}^{\infty}\int_{0}^{\infty}{x^3}{e^{-nx}}\mathrm{dx} \\ \texttt{NOW we know} \int_{0}^{\infty}{e^{-nx}}\mathrm{dx}=\frac{1}{n}\\ \texttt{differentate thrice w.r.t n}\\ \\ \int_{0}^{\infty}{x^3}{e^{-nx}}\mathrm{dx}=\frac{6}{n^4}\\ \texttt{plug it in I}\\ I=\sum_{n=1}^{\infty}{\frac{6}{n^4}} \zeta (4)=\frac{\pi^4}{90}\\\texttt{this can be proved by tracking down the coefficient of}x^6\texttt{in the expansion of} \\sinx*\sin \i x \\ I=\frac{\pi^4}{15}
courtesy : lectures of physics by feynman [1]

1
xYz ·

and the idea of calculating \zeta(4) was stolen directly by basel problem

1
aposlil ·

Nice work xyz

6
AKHIL ·

hey guys

this is above IIT stuff i believe:P

62
Lokesh Verma ·

yes it is.. [1]

23
qwerty ·

sir , i think xyz's # 10 post is well within syllabus

6
AKHIL ·

well that integral mite be
but i m talkin abt the concept....

Your Answer

Close [X]