4m triangles

Let ABC be any triangle with altitudes h1,h2,h3 and inradius r, then find the minimum value of

(h1+r)/(h1-r) +(h2+r)/(h2-r) +(h3+r)/(h3-r) =

If A,B and C are three non-collinear points in a plane, the area of the greatest equilateral triangle, which can be drawn to circumscribe triangle ABC is =

3 Answers

11
Devil ·

ans to 1st one is 6.

1
Soumi Dasgupta ·

can u pls just xplain how??

21
eragon24 _Retired ·

we know h_{1}=\frac{2\Delta }{a} h_{2}=\frac{2\Delta }{b} h_{3}=\frac{2\Delta }{c}

so given exp is =\frac{2\Delta /a +\Delta/s }{2\Delta /a -\Delta/s }+\frac{2\Delta /b +\Delta/s }{2\Delta /b -\Delta/s }+\frac{2\Delta /c +\Delta/s }{2\Delta /c -\Delta/s }

=\frac{2s+a}{2s-a}+\frac{2s+b}{2s-b}+\frac{2s+c}{2s-c}

=\frac{4s}{2s-a}+\frac{4s}{2s-b}+\frac{4s}{2s-c}-3 now

apply AM≥HM for \frac{4s}{2s-a}+\frac{4s}{2s-b}+\frac{4s}{2s-c}

3\left[\frac{1}{3}\left\{\frac{4s}{2s-a}+\frac{4s}{2s-b}+\frac{4s}{2s-c}\right\} \right]-3\geq 3\left(\frac{3}{\frac{2s-a}{4s}+\frac{2s-b}{4s}+\frac{2s-c}{4s}} \right)-3

\frac{4s}{2s-a}+\frac{4s}{2s-b}+\frac{4s}{2s-c}\right-3\geq 3.3-3

\geq 6

Your Answer

Close [X]