\tan(A-B)=\frac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}\\ \text{Put A=pi/4;B=x} \\ (1+\tan(\frac{\pi}{4}-x)-1)=\frac{1-\tan{x}}{1+\tan{x}}\\ \boxed{(1+\tan(\frac{\pi}{4}-x))(1+\tan{x})=2}\\ \text{so we can club the conjugates i.e 5,40;10,35;15,30;20;25}\\ \texttt{Answer:5}
(1 + tan5°) (1 + tan10°) (1 + tan15°).........( 1 + tan45°) = 2k ,
then k equals ___
then answer is an integer (0 - 9)
-
UP 0 DOWN 0 0 2
2 Answers
aditya ravichandran
·2011-05-11 01:52:05