how do we solve the summation of series problems

how do we solve the summation of series problems

liek sina + sin 2a + sin 3a ... + sin na

7 Answers

1
ith_power ·

sin a + sin(a+b) + sin (a+2b) +... sin(a+(n-1)b)
=let q.
then 2qsin(b/2)=cos(a-b/2)- cos(a+b/2)+cos(a+b/2)-...cos(a+(n-3/2)b) -cos(a+(n-1/2)b).
=2sin(a+((n-1)/2)b)* sin (nb/2).

here b=a, so ans..
2sin(a+nb/2)sin((n+1)b/2).

62
Lokesh Verma ·

dude this is good..

i like the complex power method.. it is easier and less dirtly.. actually not dirty at all.

Someone willing to post that solution?

33
Abhishek Priyam ·

ok let me try...

33
Abhishek Priyam ·

It is the imaginary part of eia+ei2a...........

62
Lokesh Verma ·

yes.. u got the hint :)

1
Rohan Ghosh ·

this is nothing but the imaginary part of
(cosa+isina)+(cosa+isina)2+....(cosa+isina)n

hence this is a geometric progression
and we get it as

(isina + cosa)((isina+cosa)n-1)/(isina+cosa-1)

=
(sina + cosa)(isinna-1+icosna)/(isina-1+cosa)

simplifying we get the imaginary term as =
2sin(a(n+1)/2)sin(na/2)

62
Lokesh Verma ·

Good work rohan :)

Your Answer

Close [X]