cot A, cot B and cot C are in A.P. if :
cot A – cot B = cot B – cot C
→ cos Asin A-cos BsinB = cos BsinB - cos Csin C
→sin(B-A)sinA sinB = sin(C-B)sinC sin B
→sin (B – A) sin C = sin (C – B) sin A
→ sin (B – A) sin (B + A) = sin (C – B) sin (C + B)
→sin2B – sin2A = sin2C – sin2B
→ b24R2 - a24R2 = c24R2 - b24R2 (using sine rule)
→ b2 -a2 = c2 - b2
→ 2 b2 =a2 + c2
→ a2,b2,c2 are in AP
→cot A, cot B and cot C are also in A.P.
Proved