Indentity

How do I prove sin2A-sin2B=sin(A+B)sin(A-B) ?

3 Answers

996
Swarna Kamal Dhyawala ·

sin(A+B)sin(A--B)
= (sinAcosB+cosAsinB)(sinAcosB--cosAsinB)
= (sinAcosB)^2 -- (cosAsinB)^2
= sin^2A(1--sin^2B) --sin^2B(1--sin^2A)
= sin^2A -- sin^2Asin^2B -- sin^2B + sin^2Asin^2B
= sin^2A -- sin^2B

2305
Shaswata Roy ·

sin2A-sin2B
=(sinA-sinB)(sinA+sinB)
=2sin(A+B2cos(A+B2)*2sin(A-B2)cos(A-B2)
=sin(A+B)sin(A-B)

36
rahul ·

Also,

sin(A+B).sin(A-B)

= 1/2[cos2B - cos2A]

=1/2[1 - 2sin2B - 1 + 2sin2A]

= sin2A - sin2B.

Your Answer

Close [X]