min value

\hspace{-16}$find minimum value of $f(\theta)=a\sec\theta+b\csc\theta$\\\\ $0 <\theta<\frac{\pi}{2}$

10 Answers

1
Debosmit Majumder ·

sry..my prev post was wrong....used calculus and got (a2/3+b2/3)3/2 same as aditya

but using a.m≥g.m i`m getting f(θ) ≥ (√2ab)(√sin3θ+cos3θ)....can anything be done after this?

262
Aditya Bhutra ·

i got (a2/3 + b2/3)3/2

1
rishabh ·

@aditya its not given that a,b>0 so i guess you can't use a.m.>g.m.

262
Aditya Bhutra ·

@ rishab - i didnt use AM≥GM. instead i used calculus and came to the result.

1
Debosmit Majumder ·

@rishabh:my mistake....can`t use am≥gm....

1
rishabh ·

oops sorry. i meant debosmit, not aditya.

1708
man111 singh ·

actually here a,b>0

aditiya and Debosmit you are right

(a^2/3 + b^2/3)^3/2

341
Hari Shankar ·

By Holder's Inequality

(\sin^2 \theta + \cos^2 \theta) \left(\frac{b}{\sin \theta} + \frac{a}{\cos \theta} \right)\left(\frac{b}{\sin \theta} + \frac{a}{\cos \theta} \right) \ge \left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^3

and so we have

a \sec \theta + b \csc \theta \ge \left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}

1
fahadnasir nasir ·

-b

1708
man111 singh ·

Thanks bhatt sir,aditiya,Debosmit

Your Answer

Close [X]