prop.'s of trianges

A triange has sides a,b,c and altitudes opp. to these sides h1,h2,h3 resp. The max. value of a2/h12+b2/h22+c2/h32 = ?

1 Answers

341
Hari Shankar ·

h1 = b sin C = c sin B
h2 = a sin C = c sin A
h3 = a sin B = b sin A

a2/h12 + b2/h22 = a2/b2 sin2C + b2/a2 sin2C ≥ 2/sin2C from AM-GM Inequality

Likewise

b2/h22 + c2/h32 ≥ 2/sin2B and

c2/h32 + a2/h12 ≥ 2/sin2A

Hence a2/h12 + b2/h22 + c2/h32 ≥ (1/sin2A + 1/sin2B + 1/sin2C)

But we know that

sin2A + sin2B + sin2C ≤ 9/4

From AM-GM, we have
(sin2A + sin2B + sin2C) (1/sin2A + 1/sin2B + 1/sin2C) ≥ 9

Hence, (1/sin2A + 1/sin2B + 1/sin2C) ≥ 4

From which we infer that a2/h12 + b2/h22 + c2/h32 ≥ 4

Your Answer

Close [X]