h1 = b sin C = c sin B
h2 = a sin C = c sin A
h3 = a sin B = b sin A
a2/h12 + b2/h22 = a2/b2 sin2C + b2/a2 sin2C ≥ 2/sin2C from AM-GM Inequality
Likewise
b2/h22 + c2/h32 ≥ 2/sin2B and
c2/h32 + a2/h12 ≥ 2/sin2A
Hence a2/h12 + b2/h22 + c2/h32 ≥ (1/sin2A + 1/sin2B + 1/sin2C)
But we know that
sin2A + sin2B + sin2C ≤ 9/4
From AM-GM, we have
(sin2A + sin2B + sin2C) (1/sin2A + 1/sin2B + 1/sin2C) ≥ 9
Hence, (1/sin2A + 1/sin2B + 1/sin2C) ≥ 4
From which we infer that a2/h12 + b2/h22 + c2/h32 ≥ 4