\frac{s^{2}}{4}=\frac{(a+b+c)^{}2}{16}=\frac{a^{2}+b^{2}+c^{2}+2ab+2bc+2ca}{16}}{}
a^{2}+b^{2}+c^{2} \geq ab + bc + ca\text{ (Rearrangement inequality)}
\implies \frac{s^{2}}{4} \geq \frac{3(ab + bc+ca)}{16}=\frac{3\cdot 2}{16}\Delta\left(\frac{1}{sinC}+\frac{1}{sinA}+\frac{1}{sinB}\right)
(\because \frac{1}{2}a\cdot bsinC =\Delta,\frac{1}{2}b\cdot csinA =\Delta,\frac{1}{2}c\cdot asinB =\Delta)
\text{Being the angle's of a triangle A+B+C=180}
\text{Since }sin\theta \text{ is a convex function (i.e. on differentiating it} \\\text{twice we get a a function which is}>0\text{ for all values of }\theta \text{ b/w 0 to 180)}
\text{We can apply the Jensen's inequality,}
f(a)+f(b)+f(c)\geq 3f\left(\frac{a+b+c}{3}\right)=3\frac{1}{sin(60)}=2\sqrt{3}
\therefore \frac{s^{2}}{4} \geq \frac{3\times 2}{16}\Delta 2\sqrt{3}=\frac{3\sqrt{3}\Delta}{4} > \Delta