If sin A,sin B,sin C are in A.P.
prove that the altitudes are in H.P .
-
UP 0 DOWN 0 0 1
1 Answers
Shaswata Roy
·2014-01-24 07:05:30
Let's denote area by Δ.
\sin A,\sin B,\sin C \text{ are in AP}
\rightarrow 2R\sin A,2R\sin B,2R\sin C \text{ are in AP}
\rightarrow a,b,c \text{ are in AP}
\rightarrow \frac{1}{a},\frac{1}{b},\frac{1}{c} \text{ are in HP}
\rightarrow \frac{2\Delta}{a},\frac{2\Delta}{b},\frac{2\Delta}{c} \text{ are in HP}
\rightarrow h_a,h_b,h_c\text{ are in HP}
Where ha,hb,hc are the altitudes of the triangle.
- Himanshu Giria thanks
Upvote·0· Reply ·2014-01-24 19:37:14