1/sin(pi/7)=1/sin(2pi/7)+1/sin(3pi/7)
sin(2pi/7)*sin(3pi/7)/sin(pi/7)=sin(2pi/7)+sin(3pi/7)
2sin(pi/7)*cos(pi/7)*sin(3pi/7)/sin(pi/7)=sin(2pi/7)+sin(3pi/7)
2cos(pi/7)*sin(3pi/7)=sin(2pi/7)+sin(4pi/7)
[as sin(x)=sin(pi-x)]
now the above result is clearly true from sum to product formulas
i.e.
sin(x)+sin(y)=2sin(x+y/2)*cos(x-y/2)
hence proved
i guess this question is pretty damn simple
i want a harder one