Solve the trig eq

Solve the equation :
cos2x + cos22x + cos23x = 1 for all x

2 Answers

21
Arnab Kundu ·

cos^2x=\frac{1+cos2x}{2}
so the eq. in equivalent to

(1+cos2x)+(1+cos4x)+(1+cos6x)=2

or, 3+cos2x+cos6x+cos4x=2

or,(2cos2x-1)+2(cos5x)(cosx)=-1

or,2cos2x+2(cos5x)(cosx)=0

or,cosx(cosx+cos5x)=0

or,cosx{(2)(cos3x)(cos2x)}=0

so, either cosx=0 or cos2x=0 or cos3x=0

21
Shubhodip ·

Use \cos ^2(x)+ \cos^2 (2x)+ \cos ^2 (3x)-1 = 2\cos^2(x)\cos(2x)(2\cos(2x)-1)

Your Answer

Close [X]