summation

1)Evaluate \sum_{0}^{infinity}{sin(n\alpha )/n} = ??? (n varies from 0 to infinity)

[\alpha\varepsilon (0,2\pi )]

2)Find the sum of \sum_{r=00}^{infity}{\frac{sinr\alpha }{sin^{r}\alpha }}

3 Answers

4
UTTARA ·

1) Given exprsn = Lt n-->∞ sin (na)/n

= Lt n-->∞ [ sin(na)/na x a ]

Is Lt for n or a ????

3
msp ·

uttara i have corrected it,sry for the trouble.

62
Lokesh Verma ·

first one can be solved by first using

\sum_{0}^{infinity}{sin(n x )/n} = \sum_{0}^{\infty}{\int cos(nx)dx}=\int ( \sum_{0}^{\infty}{cos(n\alpha)})dx

The infinite sum of cos can by found out using complex numbers.. or even otherwise..

Your Answer

Close [X]