cos2A+cos2B+cos2C
=1-sin2A+cos2B+cos2C
=1+(cos2B-sin2A)+cos2C
=1+cos(B+A)cos(B-A)+cos2C
=1-cosC cos(B-A)+cos2C
=1-cosC[cos(B-A)-cosC]
=1-cosC[cos(B-A)+cos(B+A)]
=1-cosC[2cosAcosB]
=1-2cosAcosBcosC
BY THE EQUATION,THEN
1-2cosAcosBcosC=1
THEN
2cosAcosBcosc=0
THEN EITHER cosA=0 OR cosB=0 OR cosC=0
SO EITHER angle (A or B or C)=900
so option (a) triangle is right angled is correct