let the opposite side be x...
so sinθ/2a=sin120/x ==> x2 = 3a2/sin2θ ... (i)
now cos120 = [(2a)2 + (2b)2 - x2]/(2*2a*2b)
==> -1/2 = (4a2+4b2-x2)/8ab
==> -4ab = 4a2+4b2-x2
==> x2 = 4a2+4b2 + 4ab ... (ii)
equating (i) and (ii),
sin2θ = 3a2/(4a2+4b2 + 4ab)
==> tan2θ = 3a2/(a2+4b2+4ab) = 3a2/(a+2b)2
==> tanθ = a√3/(a+2b)