1 Answers
let x=e2Ï€i/11
x10=e20Ï€i/11=cos(20Ï€/11)+isin(20Ï€/11)=cos(2Ï€/11)-isin(2Ï€/11)
x-x10=2isin(2Ï€/11)
4isin(2Ï€/11)=2(x-x10)
itan(3Ï€/11)=[cos(6Ï€/11)+isin(6Ï€/11)-1][cos(6Ï€/11)+isin(6Ï€/11)+1]=(x3-1)/(x3+1)=(x3-x33)/(x3+1)
=x3-x6+x9-x12+x15 -x18+x21-x24+x27-x30
=x3-x6+x9-x+x4 -x7+x10-x2+x5-x8
4isin(2Ï€/11)+itan(3Ï€/11)= x3-x6+x9-x+x4 -x7+x10-x2+x5-x8+ 2(x-x10)
=[x+x3+x4+x5+x9]- [x2+x6+x7+x8+x10]
S S'
so S=[x+x3+x4+x5+x9]
and S'=[x2+x6+x7+x8+x10] =[x-1+x-3+x-4+x-5+x-9]
1+S+S'=1+x+x2+..+x10=(1-x11)/(1-x)=0
so S+S'=-1
Find SS' which will be 5+2(S+S')=3
now S+S' is known and SS' is known so we can find S-S'
which is ±i√11
4isin(2Ï€/11)+itan(3Ï€/11)=±i√11
or 4sin(2Ï€/11)+tan(3Ï€/11)=√11 (it cannot be negative)