thanks
1. If ABCD is cyclic quadrilateral, show that AC . BD = AB . CD + BC . AD
2. In a ΔABC, show that a3 cos (B – C) + b3 cos (C – A) + c3 cos (A – B) = 3 abc
-
UP 0 DOWN 0 0 4
4 Answers
Lokesh Verma
·2011-05-17 19:38:53
2nd one is simple to start...
a = 2R sin A = 2R sin (B+C)
Expand:2 sin(B+C)cos(B-C) = sin 2B + Sin 2C
NOw sin 2B= 2 sin B cos B
Now apply 2R sin B = b
so you will now be able to use a cos B + b cos A = c
Then it should be easy...
Hope you can fill the gaps...
Lokesh Verma
·2011-05-17 19:41:00
THe first one is ptolmey's theorem.. which i remember having seen a couple of not so elegant proofs... [2]