2)
2\left(tanx+\frac{1}{\sqrt{3}} \right)^2+\left(sinx-\frac{1}{2} \right)^2=0
The general soln. of which is
(2n+1)\pi-\frac{\pi}{6}
help me friends!
Find the general solution of following trigonometric equations-
1) solve cos4x + sin4x = 2 cos ( (2x) + (pi/6)) cos ( (2x) - (pi /6))
2) Solve
sin2x + 2tan2x + ((4/√3) tanx) - sinx + (11/12) = 0
3) 2sin (x + (pi/4)) = tanx + cotx
hint for 1st question -
use 2cosAcosB = cos(A+B)+cos(A-B) in rhs
use identity cos 4x = 2cos2(2x)-1 and cos 2x =cos2x-sin2x in rhs
simplify rhs and lhs.
convert terms to sin22x and cos22x then simple stuff.
-
hint for q.3
check max. value of lhs
check min value of rhs
compare the two
finish it off :)
2)
2\left(tanx+\frac{1}{\sqrt{3}} \right)^2+\left(sinx-\frac{1}{2} \right)^2=0
The general soln. of which is
(2n+1)\pi-\frac{\pi}{6}