Trigonometeric Function

Help me friends.I am not able to solve it.

If tan( (pi/4) + y/2) = tan3 ( (pi/4) + x/2),

prove that sin(y)/ sin(x) = (3 + sin2x)/ (1+ 3sin2x)

2 Answers

11
Khilen Khara ·

1+tan(y/2)1-tan(y/2)=[1+tan(x/2)1-tan(x/2)]3

cos(y/2)+sin(y/2)cos(y/2)-sin(y/2)=[cos(x/2)+sin(x/2)cos(x/2)-sin(x/2)]3

1+siny1-siny=[1+sinx1-sinx]3

1+siny1-siny=1+3sinx+3sin2x+sin3x1-3sinx+3sin2x-sin3x

Applying componendo and dividendo...

siny=3sinx + sin3x1+3sin2x

sin ysin x=3 + sin2x1+3sin2x..(Hence proved)..:)

1
Tommy ·

How far did you get?

Use the tangent addition identity and remember that tan(PI/4) = 1.

Your Answer

Close [X]