never knew that 2.25 was a natural number... :P
\hspace{-16}\mathbb{I}$f $\bf{n \; \mathbb{\in \mathbb{N}}}$. Then find value of $\bf{n}$ in \\\\ $\bf{\tan^{-1}\left(\frac{1}{11}\right)+n.\tan^{-1}\left(\frac{1}{7}\right)=\tan^{-1}\left(\frac{1}{n}\right)}$
-
UP 0 DOWN 0 0 4
4 Answers
man111 singh
·2012-05-15 07:53:06
Sorry friends actually there is a typo mistake...
\hspace{-16}\mathbb{I}$f $\bf{n \; \mathbb{\in \mathbb{N}}}$. Then find value of $\bf{n}$ in \\\\ $\bf{\tan^{-1}\left(\frac{n}{11}\right)+n.\tan^{-1}\left(\frac{1}{7}\right)=\tan^{-1}\left(\frac{1}{n}\right)}$