-
find the value of sin\left(\textrm{log} \left ( \textup{i}^\textup{i} \right ) \right) ...
-
In the situation shown in the figure for whAT value of force F sliding between middle and lower block will start *Image* ...
-
In the situation shown in the figure for whAT value of force F sliding between middle and lower block will start *Image* ...
-
In the situation shown in the figure for whAT value of force F sliding between middle and lower block will start *Image* ...
-
In the situation shown in the figure for whAT value of force F sliding between middle and lower block will start *Image* ...
-
The question that said [sin x + cos x] / sin2x this function had to be integrated with limits (pi/6) to (pi/3) ...
-
In the situation shown in the figure for whAT value of force F sliding between middle and lower block will start *Image* ...
-
In the situation shown in the figure for whAT value of force F sliding between middle and lower block will start *Image* ...
-
In the situation shown in the figure for whAT value of force F sliding between middle and lower block will start *Image* ...
-
PLZ SOLVE If all the distinct roots of the equation x^{47}+2x^{46}+3x^{45}...........+24x^{24}+23x^{23}....................2x^2+x=0 are z_1,z_2.......z_k and imaginary part of z_k^2 is b_k Then find the value of \left|b_1 \ri ...
-
find all the numbered pairs (x,y) that satisfy the equation tan^4x+tan^4y+2cot^2x.cot^2y=3+sin^2(x+y) ...
-
*Image* ...
-
let f(x)=\int_{0}^{1}{\left|t-x \right|t.dt} for all real xfind the function f(x) and its minimum value ...
-
Limit \lim_{n\to\infty}\frac{(n+1)^{9}+(n+2)^{9}+\cdots+(n+n)^{9}}{1^{9}+2^{9}+\cdots+n^{9}} =2^{k}-1 Find K ...
-
\int \frac{t. ( 1- t ^2 ) ^{\frac{-7}{4}}}{ \sqrt{t + 4 }.\sqrt{1- t^2 }+ \sqrt{t+ 5 }.\sqrt{1- t^2}} ...
-
plz solve 1) \int_{0}^{\infty}{\frac{1}{(x^2+a^2)(x^2+b^2)}}dx 2) \int_{0}^{\pi}{log(1-6cosx+9)}dx 3) \int_{0}^{1}{\frac{x^{a-1}-x^{-a}}{(1+x)logx}}dx ...
-
plz solve 1) \int_{0}^{\infty}{\frac{1}{(x^2+a^2)(x^2+b^2)}}dx 2) \int_{0}^{\pi}{log(1-6cosx+9)}dx 3) \int_{0}^{1}{\frac{x^{a-1}-x^{-a}}{(1+x)logx}}dx ...
-
A certain amount of ideal monoatamic gas undergoes, process given by UV1/2 = C where U is the internal energy of the gas. The molar specific heat of the gas for the process will be (c=constant) A) R/2 B) 3R C) 5R/2 D) -R/2 ...
-
Number of solns for x between 3 and 15 if \int_{0}^{x}{\left[t \right]}.dt=\int_{0}^{\left[x \right]}{t.dt} wer [.] is GIF ...
-
Number of solns for x between 3 and 15 if \int_{0}^{x}{\left[t \right]}.dt=\int_{0}^{\left[x \right]}{t.dt} wer [.] is GIF ...
-
\left ( 1+\frac{1}{3} \right )\left ( 1+\frac{1}{3^2} \right )\left ( 1+\frac{1}{3^4} \right )\left \left ( 1+\frac{1}{3^8} \right )..........................\left ( 1+\frac{1}{3^{2^n}} \right ) ...
-
\left ( 1+\frac{1}{3} \right )\left ( 1+\frac{1}{3^2} \right )\left ( 1+\frac{1}{3^4} \right )\left \left ( 1+\frac{1}{3^8} \right )..........................\left ( 1+\frac{1}{3^{2^n}} \right ) ...
-
le the rth term tr of a series is given by t_{r}=\frac{r}{1+r^{2}+r^{4}} then find the value of \lim_{n\rightarrow \infty }\sum_{r=1}^{n}{t}_{r} ...
-
If f(x)=\frac{1-x}{1+x} , Then find f2010(x) = here f2010(x) = fofof................2010 times. ...
-
If f(x)=\frac{1-x}{1+x} , Then find f2010(x) = here f2010(x) = fofof................2010 times. ...
-
For any acute angled \Delta ABC find the minimum value of \frac{sinA}{A}+\frac{sinB}{B}+\frac{sinC}{C} ...
-
f(x)=\frac{3a}{x+a}+\frac{4b}{x+b}-\frac{5c}{x+c}-\frac{6d}{x+d} is divisible by x2 the find the value of *Image* ...
-
*Image* ...
-
*Image* ...
-
*Image* ...