-
which one is greater: A=20104019 or B=2009200920112011 ...
-
*Image* ...
-
1) Prove that ∫x3 2ax-x2 dx=7πa5/8. 2) Integrate: [ x4/(1-x4)] *cos-1(2x/(1+x2). Upper limit=1/ 3 ;Lower limit=-1/ 3 . 3) Integrate::: 2-x2/[(1+x) 1-x2 ].Upper limit=1;Lower limit=0. 4) Integrate:::: log(1+tanx) from 0 to ...
-
∫ dx/cosx + cosec x ∫ 3cot3x - cotx/tanx - 3tan3x ∫tan{x -k}tan{x+k}tan2x ...
-
∫ dx/cosx + cosec x ∫ 3cot3x - cotx/tanx - 3tan3x ∫tan{x -k}tan{x+k}tan2x ...
-
∫ dx/cosx + cosec x ∫ 3cot3x - cotx/tanx - 3tan3x ∫tan{x -k}tan{x+k}tan2x ...
-
2^sinx+2^cosx>1 ...
-
∫√(sin x-sin3x/1-sin 3x)dx ...
-
*Image* ...
-
*Image* ...
-
*Image* ...
-
( *Image* ...
-
( *Image* ...
-
∫(x3m+x2m+xm)(2x2m+3xm+6)1/mdx .For any natural no. m, x>0. ...
-
Integrate: 1) (1+x-2/3)/(1+x) 2) cos2x /sinx 3)(x2 + n(n-1))/(xsinx+ncosx)2 ...
-
*Image* ...
-
∫sec2x/(secx+tanx)9/2 ...
-
INTEGRATE: 1) (x3+3)/x6(x2+1). Upper limit=∞;Lower limit=0 2) xe-x/( 1-e-2x ). Upper limit=0;Lower limit=∞. 3) If f(x) be a function satisfying f'(x)=f(x) with f((0)=1 and g be the function satisfying f(x) + g(x)=x2,then ...
-
Integrate: 1) (1+x-2/3)/(1+x) 2) cos2x /sinx 3)(x2 + n(n-1))/(xsinx+ncosx)2 ...
-
*Image* ...
-
*Image* ...
-
Integrate: 1) [(x-1) x4+2x3-x2+2x+1 ]/x2(x+1) 2) (x2-1)/(x3 2x4-2x2+1 ) ...
-
1 ∫cosx-sinx/ sin2x 2∫sinx/(1-sinx)0.5 ...
-
1 ∫cosx-sinx/ sin2x 2∫sinx/(1-sinx)0.5 ...
-
√((1-√x)/(1+√x)) ...
-
∫sin(4x)etan2x ...
-
*Image* ...
-
*Image* ...
-
π∫0 xcotxdx ...
-
π∫0 dx/1+cos2x ...