-
1) evaluate \sum_{r=1}^{667}\binom{2000}{3r-1} 2)evaluate \sum_{r=1}^{2008}r.r! 3)find \prod_{r=1}^{45}(1+\textup{tan} (\textup{r})) ...
-
what were the official rank cutoff marks for aieee 2009...i.e rank wrt to score.. ...
-
1)Find the number of solutions of the equation *Image* here [.] is greatest integer function 2) evaluate - \int_{0}^{1}{(1+e^{-x^2}})dx 3) \textup{if }I_n=\int_{0}^{1}e^x(x-1)^n \textup{dx} \textup{ and } I_p=24e-65 \\\textup ...
-
wat is the O N of 1) Cr in CrO5 2)S in H2SO5 why is with normal way of finding ON the ans is not coming ...
-
1) draw the graph of {x2} ......{.} is fractional part 2) \\If\\\; \theta +\phi =\beta ,\left(0<\beta <\frac{\pi}{2} \right)\\ \textup{then find the max value of} \\ sin^2\theta +sin^2\phi ...
-
wat is the O N of 1) Cr in CrO5 2)S in H2SO5 why is with normal way of finding ON the ans is not coming ...
-
l ...
-
\\\textsl{let N be sum of all the roots of the equation }\left (\frac{1}{2x} -1 \right )^{2009}=-1\\ \textit{find the last digit of N} ...
-
find the min possible value of \left|z \right|^2+\left|z -3\right|^2+\left|z -6i\right|^2 ...
-
find the min possible value of \left|z \right|^2+\left|z -3\right|^2+\left|z -6i\right|^2 ...
-
*Image* ...
-
if z1 z2 z3 r complex nos such that \left|z_{1} \right|=\left|z_{2} \right|=\left|z_{3} \right|=1 then find the max value of \left|z_{1}-z_{2} \right|^{2}+\left|z_{2}-z_{3} \right|^{2}+\left|z_{3}-z_{1} \right|^{2} ...