1) \left|(\vec{a }\times \vec{b})\cdot \vec{c }\right|=\left|(\left|\vec{a} \right|\left| \vec{b}\right| sin\theta \hat{n} )\cdot \left| \vec{c}\right| \hat{k}\right|
= \left|\left| \vec{a}\right| \left| \vec{b}\right|\left| \vec{c}\right|sin\theta \left| \hat{n}\right|\left| \hat{k}\right|cos\phi \right|
= \left| \vec{a}\right| \left| \vec{b}\right|\left| \vec{c}\right|\left| \hat{n}\right|\left| \hat{k}\right|sin\theta cos\phi \: ... (i)
From (i),
\left| \vec{a}\right| \left| \vec{b}\right|\left| \vec{c}\right|\left| \hat{n}\right|\left| \hat{k}\right|sin\theta cos\phi = \left| \vec{a}\right| \left| \vec{b}\right|\left| \vec{c}\right|
\Rightarrow sin\theta cos\phi = 1
Clearly,
\theta = \pi /2 \:\: and\:\: \phi =0
Hence, option 4.