A great problem

z1,z2,z3,z4 are four complex nos. If z1 + z2 = 0 , and z1z2 + z3z4 = 0 , then prove that these are concyclic.

2 Answers

11
Gone.. ·

z1z2 + z3z4 = 0 ----------------(1)

take z1=keiθ...
z1 + z2=0 therefore z2=- keiθ...
Let z3=reiα and z4=Reiβ

Substitute all values we assumed in the eqn --(1)

we get rRcos(α+β)=k2cos2θ &
rRsin(α+β)=k2sin2θ
sqr and add
rR=k2 ----------(2)
α+β=2θ -----------------(3)

Let the eqn passing through the circle be zz + λz + λz + μ =0

Now z1,z2,z3 satisfy this eqn..put the values here..ul get 3 eqns..

Take 2 eqns n solve to get
μ=-k2 --------------(4)

& λeiθ + λe-iθ= 0

Taking conjugate and adding we get
λeiα + λe-iα=-(λeiβ + λe-iβ) ---------------(5)

When we substituted z3 in (1) we got this
r2 + r(λeiα + λe-iα)+μ=0

From this n (5),(4),(2) we get

k4R2 - k2/R(λeiβ + λe-iβ) - k2
= 0

Solving and putting μ=-k2
we get
z4z4 + λz4+λz4 + μ = 0

Thus z4 also satisfies the eqn of the circle.

Hence PROVED.

1357
Manish Shankar ·


Lets try to find the sum of angles of angle(Z1Z3Z2) and angle (Z2Z4Z1)

argZ1-Z3Z2-Z3+argZ2-Z4Z1-Z4
=arg(Z1-Z3)+arg(Z2-Z4)-arg(Z2-Z3)-arg(Z1-Z4)
=arg(Z1Z2+Z3Z4-Z1Z4-Z2Z3)-arg(Z1Z2+Z3Z4-Z1Z3-Z2Z4)
=arg(-Z1Z4-Z2Z3)-arg(-Z1Z3-Z2Z4)
=arg[Z1(Z3-Z4)]-arg[Z1(Z4-Z3)] (putting Z2=-Z1)
=arg(Z3-Z4)-arg(Z4-Z3)=Ï€

Your Answer

Close [X]