algebra-3

if a1,a2....a2n form a decreasing A.P then

a12-a22+a32-a42...............-a2n2=

a)n(a12-a2n2)/2n-1

b)2n(a12-a2n2)/2n-1

c)2n(a12-an2)/n-1

d)n(a12-a2n2)/n+1

3 Answers

1
Ragadeepika ·

a1,a2,...an are in decreasing AP. It means the common difference is -ve.

Let the common difference be -d.

a1 - a2 = a3-a4 = ... = d

a12-a22 + a32 - a42 + ... -a2n2

= (a1 - a2)(a1+a2) + ... + (a2n-1-a2n)(a2n-1+a2n)

= d(a1+a2+...a2n)

We know that sum of equidistant terms from both ends of an AP is same.

a1+a2n

= a2+a2n-1=...so on

d(a1+a2+...a2n) = nd(a1+a2n) ---1.

a2n = a1 + (2n-1)(-d) d = (a1-a2n)/2n-1

Putting this in 1, we get the required answer, which is A.
Hope this helps
ALL THE BEST

1
Optimus Prime ·

ya u r rite

11
rkrish ·

SHORTCUT : (to save time)

Let a1,a2,...,an ≡ 3,2,1,0,-1,-2

2n=6 \Rightarrow n=3

Exp = 9 - 4 + 1 - 0 + 1 - 4 = 3 \leftarrow

a) 3(9-4)/6-1 = 15/5 = 3 \leftarrow

b) 6(9-4)/6-1 = 30/5 = 6

c) 6(9-4)/3-1 = 30/2 = 15

d) 3(9-4)/3+1 = 15/4 = 15/4

Hence a is correct

Your Answer

Close [X]