first of all,
log12(60) = log12(15) + log12(4) = log 15 + 2 log 2log 6 + log 2 = k (say)
now, a = {log 15 + log 2}log 6 and, b = {log 6 + 2 log 2}log 15
=> (a + 1) = {log 15 + log 2 + log 6}log 6 and, (b + 1) = {log 6 + 2 log 2 + log 15}log 15
=> k = {(b + 1)log 15 - log 6}{(a + 1)log 6 - log 15}
=> k = {(b + 1)log615 - 1}{(a + 1) - log615} - - - - (*)
Now comes the calculation for log615
clearly we have,
a log 6 - log 15 = log 2 -- (i) and,
b log 15 - log 6 = 2 log 2 --- (ii)
=> b log 15 - log 6 = 2a log 6 - 2 log 15
=> b log615 - 1 = 2a - 2 log615
=> log615 (b + 2) = (2a + 1)
=> log615 = (2a + 1)(b + 2)
substituting this value in our star eqn. we get,
k = {(b + 1)(2a + 1) - (b + 2)}{(a + 1)(b + 2) - (2a + 1)}
maybe correct i guess...!!