tahnx sir[1]
Prove that
\frac {C_0}{x}- \frac {C_1}{x+1}+ \frac {C_2}{x+2} -......+(-1)^n\frac {C_n}{x+n}=\frac {n!}{x(x+1)..(x+n)}
-
UP 0 DOWN 0 3 2
2 Answers
Apply induction on n. For n = 1, the LHS
\dfrac{C_0}{x}-\dfrac{C_1}{x+1}=\dfrac{1}{x(x+1)}
So the statement is true for n=1.
Assume true for n = m. That is, we have
\dfrac{C_0}{x}-\dfrac{C_1}{x+1}+\dfrac{C_2}{x+2}-\ldots + (-1)^m\dfrac{C_m}{x+m}=\dfrac{m!}{x(x+1)(x+2)\cdots(x+m)} ---- (1).
In the above result, replace x by x+1 to get
\dfrac{C_0}{x+1}-\dfrac{C_1}{x+2}+\dfrac{C_2}{x+3}-\ldots + (-1)^m\dfrac{C_m}{x+m+1}=\dfrac{m!}{(x+1)(x+2)\cdots(x+m+1)}
Subtract this last equation from (1) to get
\dfrac{C_0}{x}-\dfrac{C_1+C_0}{x+1}+\dfrac{C_2+C_1}{x+2}-\ldots + (-1)^m\dfrac{C_m+C_{m-1}}{x+m}+(-1)^{m+1}\dfrac{C_m}{x+m+1}=\dfrac{(m+1)!}{x(x+1)(x+2)\cdots(x+m+1)}
But C0+C1 = m+1C1, C2+C1 = m+1C2, and so on. Additionally, C0 = m+1C0 and Cm = m+1Cm+1. So the above equality becomes
\dfrac{^{m+1}C_0}{x}-\dfrac{^{m+1}C_1}{x+1}+\dfrac{^{m+1} C_2}{x+2}-\ldots + (-1)^m\dfrac{^{m+1}C_m}{x+m}+(-1)^{m+1}\dfrac{^{m+1}C_{m+1}}{x+m+1}=\dfrac{(m+1)!}{x(x+1)(x+2)\cdots(x+m+1)}
But that means the induction hypothesis is true for n=m+1 as well and hence the given statement is true for all positive integer n.