Binomial indentity

Prove that \sum_{i=1}^{p}i \binom{p}{i}(n-1)^{p-i} = p n^{p-1}

n is real, p is natural number

3 Answers

21
Shubhodip ·

\sum_{i=1}^{p} i \frac{\binom{p}{i}}{n^p}\left ( \frac{n-1}{p} \right )^{p-i} = \frac{p}{n}

71
Vivek @ Born this Way ·

Aren't both same?

I guess that was a hint.Ok. trying.

1
rishabh ·

\begin{align*} & i{ p \choose i} = p{ p-1 \choose i-1}\\ & \implies \textup{L.H.S is }, \\ & p\Sigma { p-1 \choose i-1} (n-1)^{p-i} \\ & p ((n-1)+1)^{p-1} \\ & \boxed{p(n)^{p-1}} \\ &= R.H.S \\ & \\ & \\ & \\ & \end{align*}

Your Answer

Close [X]