binomial

If \frac{1}{\sqrt{4x+1}}\left( (\frac{1 + \sqrt{4x+1}}{2}) - (\frac{1 - \sqrt{4x+1}}{2})\right)^{n}

= ax + b x^2 + cx^3 + dx^4 + ex^5, then find n.

2 Answers

62
Lokesh Verma ·

I guess you got stuck in a Googley :D

this is same as

\\\frac{1}{\sqrt{4x+1}}\left(\frac{\sqrt{4x+1} + \sqrt{4x+1}}2\right)^n \\=\frac{1}{\sqrt{4x+1}}(\sqrt{4x+1})^n \\=\frac{1}{\sqrt{4x+1}}(\sqrt{4x+1})^n \\=(\sqrt{4x+1})^{n-1}

Now what is the asnwer?

1
cute_cat ·

k so ans is 11

thnx a lot sir

Your Answer

Close [X]