k so ans is 11
thnx a lot sir
If \frac{1}{\sqrt{4x+1}}\left( (\frac{1 + \sqrt{4x+1}}{2}) - (\frac{1 - \sqrt{4x+1}}{2})\right)^{n}
= ax + b x^2 + cx^3 + dx^4 + ex^5, then find n.
I guess you got stuck in a Googley :D
this is same as
\\\frac{1}{\sqrt{4x+1}}\left(\frac{\sqrt{4x+1} + \sqrt{4x+1}}2\right)^n \\=\frac{1}{\sqrt{4x+1}}(\sqrt{4x+1})^n \\=\frac{1}{\sqrt{4x+1}}(\sqrt{4x+1})^n \\=(\sqrt{4x+1})^{n-1}
Now what is the asnwer?