x^3(1-x^5)=x^3-\binom{n}{1}x^8+\binom{n}{2}x^{13}-\cdots
Differentiate and put x=1,
RHS is the required sum and LHS=
3x^2(1-x^5)^n-5n(x^7)(1-x^5)^{n-1}
If n=1 then the required sum is =-7 otherwise it is 0.
3.nc0-8.nC1+13.nC2-18.nC3.......... upto (n+1) terms =?
x^3(1-x^5)=x^3-\binom{n}{1}x^8+\binom{n}{2}x^{13}-\cdots
Differentiate and put x=1,
RHS is the required sum and LHS=
3x^2(1-x^5)^n-5n(x^7)(1-x^5)^{n-1}
If n=1 then the required sum is =-7 otherwise it is 0.