If n is a positive integer , prove that |Im(zn)| ≤ n |Im(z)||z|n-1
Prove that if z1 and z2 are two complex numbers and c>0 , then
|z1+z2|2 ≤ (1+c)|z1|2 + (1+c-1)|z2|2
-
UP 0 DOWN 0 0 6
6 Answers
For my sake of simplicity , I 'll take the nos. as a and b instead of z 1 and z2 .
First , | a + b | 2 ≤ | a | 2 + | b | 2 + 2 | a | | b | ............ { prove this yourself } .............. { 1 }
Given c > 0 ,
so { √c | a | } 2 + { | b | / √c } 22 ≥ √ { c . | a | 2 } . { | b | 2 / c } ; ............. { AM - GM inequality }
or , c | a | 2 + c -1 | b |2 ≥ 2 | a | | b |
or , | a | 2 + | b | 2 + 2 | a | | b | ≤ | a | 2 + | b | 2 + c | a |2 + c -1 | b | 2 ........................ { 2 }
From { 1 } and { 2 } , and doing some grouping of terms , we get the desired result .
P . S --- > Most probably this is solved in Arihant objective maths or something , but I don't remember .
For the second one , it's relatively easy .
| Im { z n }Im { z } | = | z n - z2 n z - z2 | ................... [ where z2 is the conjugate of z ]
= | z n - 1 + z n - 2 z 2 + ............ |
≤ | z | n - 1 + | z | n - 2 | z | + | z | n - 3 | z | 2 + .........
{ using the fact that modulas of a complex no. and its conjugate are the same , i.e , | z | = | z2 | }
= | z | n - 1 + | z | n - 1 | + ........ n times
= n | z | n - 1
So | Im { z } n | ≤ n | Im { z } | | z | n - 1
For 2, an alternative:
Using DeMoivre's theorem, you have to prove that
|\sin n \theta| \le n |\sin \theta|
We have
|\sin n \theta| = | \sin (n-1) \theta \cos \theta + \cos (n-1) \theta \sin \theta| \le |\sin (n-1) \theta| + |\sin \theta|
In other words |\sin n \theta| - |\sin (n-1) \theta| \le |\sin \theta |
You can use telescopic summation now to arrive at
|\sin n \theta| \le n |\sin \theta|