Alpha, Beta and Gamma are the roots of x^3+ ax+ b=0
Thus Sum of roots= Alpha+ Beta+ Gamma=0
\hspace{-16}$If $\alpha,\;\beta,\;\gamma$ be The roots of the equation$ \\\\ \left\{\begin{matrix} \alpha^3+a.\alpha+b=0\\\\ \beta^3+a.\beta+b=0\\\\ \gamma^3+a.\gamma+b=0 \end{matrix}\right.\\\\\\ $Then $a\lpha+\beta+\gamma=$
Alpha, Beta and Gamma are the roots of x^3+ ax+ b=0
Thus Sum of roots= Alpha+ Beta+ Gamma=0