\hspace{-16}$Let $\bf{A = }$ set of $\bf{ 3 \times 3}$ determinat having entries $\bf{1}$ or $\bf{-1,}$\\\\ $\bf{(1)}$ If a determinat $\bf{B}$ is chosen randomly from the set of $\bf{A,}$\\\\ then the probability that the product of the elements\\\\ of any row or any column of $\bf{B}$ is $\bf{1}$ is\\\\ $\bf{(2)}$ If a determinat $\bf{B}$ is chosen randomly from the set of $\bf{A,}$\\\\ then the probability that the value of determinant $\bf{B}$ is $\bf{0}$ is\\\\ $\bf{(3)}$ If a determinat $\bf{B}$ is chosen randomly from the set of $\bf{A,}$\\\\ then the probability that the value of determinant $\bf{B}$ is $\bf{1}$ is\\\\ $\bf{(4)}$ If a determinat $\bf{B}$ is chosen randomly from the set of $\bf{A,}$\\\\ then the probability that the value of determinant $\bf{B}$ is $\bf{2}$ is\\\\ $\bf{(5)}$ If a determinat $\bf{B}$ is chosen randomly from the set of $\bf{A,}$\\\\ then the probability that the value of determinant $\bf{B}$ is $\bf{-1}$ is
-
UP 0 DOWN 0 0 0