Evaluate

( 1+i )n + ( 1- i )n

7 Answers

62
Lokesh Verma ·

This isnt that tough.

Try it like this...

1+i = √2 ( 1/√2 + i/√2 ) = √2 (cos pi/4 + i sin pi/4) = √2 ei Π/4

1-i = √2 ( 1/√2 - i/√2 ) = √2 (cos -pi/4 + i sin -pi/4) = √2 e-i Π/4

Now i think it is simple to solve this question... if u cant.. tell me :)

1
Tripti Sharma ·

so it is

2n/2 (ei npi + e-i npi )

Now what :(

62
Lokesh Verma ·

now take 2 cases n even & n odd

for n even , it will be

1-i =2n/2 ( en i Î /2 + e-i Î /2)

so cos (npi/2)+i sin (npi/2) = cos (npi/2)

same way the other case for odd n..

1
skygirl ·

this a bino expansion of the type
(a+b)^n +(a-b)^n

( 1+i )^n + ( 1- i )^n
= 2[nC0 i^0 + nC2 i^2 + nC4 i^4+ ....] (all odd things will cancel out)

now, i^0=1
i^2=-1
i^4=1
i^6=i^4.i^2=-1

so,( 1+i )^n + ( 1- i )^n= nC0 - nC2 + nC4 - nC6 +.....upto n..

1
champ ·

Binomial expansion is valid for complex numbers too ?

sorry if doubt is silly[3]

62
Lokesh Verma ·

yes it is valid :)

1
champ ·

Thank you :-)

Your Answer

Close [X]