so it is
2n/2 (ei npi + e-i npi )
Now what :(
This isnt that tough.
Try it like this...
1+i = √2 ( 1/√2 + i/√2 ) = √2 (cos pi/4 + i sin pi/4) = √2 ei Π/4
1-i = √2 ( 1/√2 - i/√2 ) = √2 (cos -pi/4 + i sin -pi/4) = √2 e-i Π/4
Now i think it is simple to solve this question... if u cant.. tell me :)
now take 2 cases n even & n odd
for n even , it will be
1-i =2n/2 ( en i Î /2 + e-i Î /2)
so cos (npi/2)+i sin (npi/2) = cos (npi/2)
same way the other case for odd n..
this a bino expansion of the type
(a+b)^n +(a-b)^n
( 1+i )^n + ( 1- i )^n
= 2[nC0 i^0 + nC2 i^2 + nC4 i^4+ ....] (all odd things will cancel out)
now, i^0=1
i^2=-1
i^4=1
i^6=i^4.i^2=-1
so,( 1+i )^n + ( 1- i )^n= nC0 - nC2 + nC4 - nC6 +.....upto n..
Binomial expansion is valid for complex numbers too ?
sorry if doubt is silly[3]