exponential equation(2)

$Solve The Equation $\mathbf{2012^x-2011^x=1+3\left(2011^{\frac{x}{3}}+2011^{\frac{2x}{3}}\right)}$\\\\ \mathbf{Ans:=}::$\mathbf{x=3}$

3 Answers

21
Shubhodip ·

this is the easiest of ur three exponential equations..

let x/3 = t

the equation becomes

20123t = 20113t + 3*20112t + 3* 2011t

≡(2012)3t = (2011t+ 1)3

iff (2012)t= (2011)t + 1

By the monotonicity of the function 2012t- 2011t we conclude t=1 is the unique
solution.

so x= 3t = 3

1708
man111 singh ·

$Shuphodip Right Answer..\\\\ 2012^t=2011^t+1\Leftrightarrow 2011^t+1=2012^t$\\\\ \left(\frac{2011}{2012}\right)^t+\left(\frac{1}{2012}\right)^t=1\Leftrightarrow \left(\frac{2011}{2012}\right)^t+\left(\frac{1}{2012}\right)^t-1$\\\\\\ Now Let $f(t)=\left(\frac{2011}{2012}\right)^t+\left(\frac{1}{2012}\right)^t-1$\\\\\\ So function $f(x)$ is Strictly Decreasing function bcz $f^{'}(x)<0\forall x\in \mathbb{R}$.\\\\ So It Cut X-axis at exactly one Point.\\\\ Means Unique solution of the Given equation.

1708
man111 singh ·

$bcz $\frac{d}{dx}(f(x))<0\forall x\in \mathbb{R}$.\\\\ So It Cut X-axis at exactly one Point.\\\\ Means Unique solution of the Given equation.

Your Answer

Close [X]