this is simply D< 0
(3a-1)2- 4 (2a2+2a-11)< 0
rhis is simple
Find the values of ‘a’ for which the expression x2 – (3a – 1)x + 2a2 + 2a – 11 is always positve.
x2 – (3a – 1) x + 2a2 + 2a – 11 > 0
D < 0
(3a – 1)2 – 4 (2a2 + 2a –11) < 0
9a2 – 6a + 1 – 8a2 – 8a + 44 < 0
a2 – 14a + 45 < 0
(a – 9) (a – 5) < 0
5 < a < 9