functional equation

\hspace{-16}$Find a function $\mathbf{f(x)\neq x}$ such that for every $\mathbf{x\geq 0}$\\\\ $\mathbf{f\left(\frac{x}{1+x}\right)=\frac{f(x)}{1+f(x)}}$\\\\

4 Answers

1
rahulsidhu ·

f(x) =0 is a trivial solution

f(x) = x/(1+ax) is the non-trivial solution

341
Hari Shankar ·

We have

f \left(\frac{1}{1+x} \right) = \frac{f\left(\frac{1}{x} \right)}{1+f\left(\frac{1}{x} \right)}

\Rightarrow \frac{1}{f \left(\frac{1}{1+x} \right)} = \frac {1}{f\left(\frac{1}{x} \right)}+1

So if g(x) = \frac {1}{f\left(\frac{1}{x} \right)}

we have g(x+1) = g(x)+1 \Leftrightarrow g(x) = x+k

Hence

f\left(\frac{1}{x} \right) = \frac{1}{ x+k}

and

f(x)= \frac{x}{ 1+kx}

341
Hari Shankar ·

there is a small snag here. will sort it out as soon as i am back

1708
man111 singh ·

thank bhatt sir and rahul

Your Answer

Close [X]