a3+b3 = a-b and a,b>0. So we must have a-b>0 or a>b
a3+b3 = a3-b3+2b3
(a3+b3)/(a-b) = 1. Hence
(a3-b3+2b3) (a-b) = 1
So, (a2+ab+b2)+ 2b3/(a-b) = 1
so (a2+ab+b2)= 1 - 2b3/(a-b)<1
This also tell us that a2+b2<1
So only (c) is right
if a,b >0 satisfy a3+b3=a-b , then..
a) a2+b2=1
b) a2+b2>1
c) a2+b2+ab < 1
d) not.
a3+b3 = a-b and a,b>0. So we must have a-b>0 or a>b
a3+b3 = a3-b3+2b3
(a3+b3)/(a-b) = 1. Hence
(a3-b3+2b3) (a-b) = 1
So, (a2+ab+b2)+ 2b3/(a-b) = 1
so (a2+ab+b2)= 1 - 2b3/(a-b)<1
This also tell us that a2+b2<1
So only (c) is right