Let P(n) = sinx +sin2x..sin(nx)
when n =1,
sinx = sin(1+1)x/2*sinx/2sinx/2
Hence P(n) is true
Assuming P(n) is true,
P(n+1)= sinx + sin2x+...sin(nx)+sin(n+1)x
= sin(n+1)x/2*sin(nx)sinx/2 + sin(n+1)x
[sin(n+1)x = 2sin(n+1)x/2 * cos(n+1)x/2
therefore p(n+1)=
sin(n+1)x2(sin(nx)+2sinx/2 * cos(n+1)x/2sinx/2)
=sin(n+1)x2(sin(nx)/2-sin(nx)/2+sin(n+2)x/2sin(x/2))
[BECAUSE 2cosA*sinB = sin(A+B)-sin(A-B)]
=sin(n+1)x/2 * sin(n+2)x/2sin(x/2)
Which gives us the required result.
- Shaswata Roy Should be read as P(1) instead of P(n),in the fourth line.Upvote·0· Reply ·2012-08-10 08:02:30