1) Show that for all positive reals a,b,c,d:-
1/a + 1/b + 4/c + 16/d>= 64/(a+b+c+d)
2) a,b,c are positive reals with abc=1. Prove that,
1/{a^3(b+c)} + 1/{b^3(c+a)} + 1/{c^3(a+b)}>= 3/2.
3) Solve the following inequality for real x:-
i) 813x-971<=163x^2
ii) 8x^2 + |-x| + 1 >0
-
UP 0 DOWN 0 0 2
2 Answers
Arshad Majeed
·2009-09-22 02:29:23
1) from titu's lemma
1/a + 1/b + 4/c + 16/d >= (1+1+2+4)2 / (a+b+c+d) = 64 / a+b+c+d
Asish Mahapatra
·2009-09-22 02:38:48
Q3. (ii) this is true for all x (think why?)
(i) rearranging 163x2-813x+971≥0
This is a quadratic inequality. now can you solve