\hspace{-16}$If $\bf{a,b,c\geq 0}$ and $\bf{a+b+c=1}$. Then minimum value of \\\\\\ $\bf{T=3\sum (ab)^{2}+3\sum ab+2\sqrt{\sum a^{2}}}$
-
UP 0 DOWN 0 1 0
\hspace{-16}$If $\bf{a,b,c\geq 0}$ and $\bf{a+b+c=1}$. Then minimum value of \\\\\\ $\bf{T=3\sum (ab)^{2}+3\sum ab+2\sqrt{\sum a^{2}}}$