infinite series dbts..3

Q1Prove log_e[(1+x)^{1+x}.(1-x)^{1-x}]=2[\frac {x^2}{1.2} + \frac {x^4}{3.4} + \frac {x^6} {5.6} +..\infty]

Q2 If n≈N
then show that \sqrt {\frac {N}{n}}=\frac {N}{n+N}+\frac {n+N}{4n}

what is most appropriate proof for this one ????

4 Answers

1
Philip Calvert ·

q2) ? was this the exact question.
funny sort of que.

24
eureka123 ·

ya..

1
b_k_dubey ·

ln ((1+x)1+x (1-x)1-x )

= (1+x)ln(1+x) + (1-x)ln(1-x)

= (ln(1+x) + ln(1-x)) + x (ln(1+x) - ln(1-x))

now use expansions formulas

= -2(x22+x44+x66+...) + x (2(x+x33+x55+......)

= 2(x21-x22 + x43-x44 + x65-x66 + ....... )

= 2(x21.2 + x43.4 + x65.6 + ....... )

1357
Manish Shankar ·

see if this method gives the right answer

ln(1+x)-ln(1-x)=2(x+x3/3................)

integrate both sides from (0 to x)

Your Answer

Close [X]