jee question!!!

If total number of runs scored in n matches is (n+14)(2n+1-n-2) where n.1, and the runs scored in the kth match are given by k(2n+1-k), wher 1≤k≤n. Find n.

3 Answers

49
Subhomoy Bakshi ·

we\; have\; to\; equate;\; \frac{n+1}{4}[2^{n+1}-n-2]=\sum_{0}^{n}{k(2^{n+1-k})}=2^{n+1}.\sum_{0}^{n}{\frac{k}{2^k}}

i.e.\;\frac{n+1}{4}[2^{n+1}-n-2]=2^{n+1}.\sum_{0}^{n}{\frac{k}{2^k}}

NOW, \sum_{0}^{n}{\frac{k}{2^k}}=2\frac{2^{n+1}-n-2}{2^{n+1}}

so, \frac{n+1}{4}[2^{n+1}-n-2]=2^{n+1}.2.\frac{2^{n+1}-n-2}{2^{n+1}}

comparing we get, \frac{n+1}{4}=2\;\;\; \;or,\;n=7

49
Subhomoy Bakshi ·

to prove Σ(k2k) = 2n+1-n-22n+1

consider, S=Σ(k2k)

S2=12.Σ(k2k)=Σ(k2k+1)

subtracting the 2 expressions we get, S2=12 + {14 + 18 + 116 + ... (n-1) terms} - n2n+1

or, S2={12 + 14 + 18 + 116 + ... n terms} - n2n+1

or, S2=12(1-2-n)1-(1/2) - n2n+1=(2n-12n) - n2n+1=2.2n-n-22n+1=2n+1-n-22n+1....... HENCE PROVED!!! [1][1][1]

1
golu pro ·

Hi , here Tk =k(2n+1-k)
=2n+1(k/2k)
Sk=2n+1(1/2 + 2/22 +3/23.....+n/2n) here in bracket is A.G.P solve it.

Sn=(n+1/4)(2n+1-n-2) THEN put Sn=Sk. ur ans will com n=7.

Your Answer

Close [X]